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. UPPER SEMICONTINUITY OF ATTRACTORS FOR APPROXIMATIONS

OF SEMIGROUPS AND PARTIAL DIFFERENTIAL EQUATIONS

by

J. K. Hale, X.-B. Lin and G. Raugel

ABSTRACT
Suppose a given evolutionary equation has a compact attractor and the
evolutionary equation 1s approximated by a finite dimensional system. Conditions
A are given to ensurc the approximate system has a compact attractor which
converges to the original one as the approximation is refined. Applications are

2 given to parabolic and hyperbolic partial differential equations.
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1. Introduction.
; Suppose X is a Banach space and T(t), t 3 0, is a C'-semigroup on X with
o N
. r 3 0; that is, T(t), t 3 0, is a semigroup with T(t) continuous in t, x together with
-t the derivatives in x up through the order r.
‘b
.}'.‘ Following standard terminology (see, for instance, [Hale, 2]), a set B ¢ X
. is said to agtract a set C C X under the semigroup T(t) if, for any € > 0, ther
- is a ty = t,(B,C,e) such that T(t)C C MN(B,¢) for t » t, where N(B,e) denotes
:'. the ¢-neighborhood of B. A compact invariant set A4 is said to be a local
. attractor if there exits and open neighborhood U of A such that A4 attracts U.
. The set A4 is an attractor if, for any bounded set B in X, A4 attracts B.
_,.: Conditions for the existence of an attractor may be found in [Hale, 2]
. Now suppose the semigroup depends on a parameter ) belonging to an open
}' subset of a Banach space, say T(t) = T,(t), where T,(t)x is continuous in (t,x,)),
" the continuity in X\ being uniform on bounded sets. If Axois a iocal attractor

for T)\o(t), then additional smoothing properties of T,(t) will imply there is a
::'. : neighborhood V of ), such that T,(t), A € V, has a local attractor Ayand A4,
::'. is upper continuous at )\, that is, sx(Ax,Axo) - 0 as ) = )\, where, for any
v two subsets A,B of X,
2 8x(A,B) = sup disty(x,B)
o xEA
‘
’ and disty(x,B) = inf |}x-y]ly .
. x yEB Hx-yllx
j:: The most general result of this type is due to {Cooperman]and may be found
i also in [Hale, 1]. The result for gradient systems is in [Hale, 2].
j The spirit of this paper relates to the above property of upper semicontinuity
::: of a local attractor. Here we consider semigroups T,(t) depending on a parameter
- h > 0 which "approximate" the semigroup T(t) and give conditions under which
>
Cd
L4
L v
H
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there exists a local attractor 4, for T,(t) with the property that 8(4,,4) - 0 as h -
0. The essential difference between the results here and the ones mentioned before
is that the approximate semigroups can correspond to Galerkin approximations,
splines or discretizations in time of evolutionary equations. These
approximations have no uniform continuity property with respect to h.

The outline of the paper is as follows. In Section 2 we give a general
approximation result which attempts to bring out the essential elements of the
approximate and exact semigroups to ensure that there is a local, compact
attractor which is upper semicontinuous. We also give one result in which we
assume the approximate semigroups have a local compact attractor and tihen infer
that the exact semigroup has a compact attractor. For the Navier-Stokes equation
and the case in which the local attractor for each approximation is a point,
Constantin, Foias and Temam have given conditions which ensure that the
original equations have an equilibrium. Schmitt, Thompson and Walter discuss the
solution of an elliptic boundary value problem in an infinite strip by analyzing
solutions of approximate differential equations. This aspect of the problem is
important but much more difficult and will be developed further in subsequent
publications. The remainder of the paper is devoted to giving specific
approximation schemes for particular evolutionary systems for which the
hypotheses of Section 2 are satisfied, These applications include spectral projection
methods for sectorial evolutionary equations and Galerkin approximations for
parabolic equations as well as discretizations in time. Some results about the
approximation of the Navier-Stokes equations and of a damped hyperbolic wave

equation also are given.

In this paper, the convergence of the attractor A, to Aash=0is considered

only in the sense of sets. The relationship between the dynamics on the

attractors also must be discussed. This problem is much more difficult and
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. requires some knowledge of the flow on 4. Some results on the case in which the
flow on A4 is Morse-Smale already have been obtained and will appear in [Lin and
. Raugel]. For the case of a scalar parabolic equation in one space dimension with
¢

' a cubic nonlinearity, this latter property has been discussed for space and time
e approximations using the Conley index [Khalsa) Numerical computations using

Galerkin approximations have been done for a similar example [Rutkowski),

- [Mora).
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2. A General Approximation Result

DPrrr

In this section, we give a general result on the approximation of a local

attrractor by "approximate" semigroups. These results are very similar to local

Al

versions of the ones of [Cooperman] (see also [Hale, 1]). More precisely, let h > 0

i 0 a0

be a parameter which will tend to 0 and let (X)), be a family of subspaces of X

such that

(2.1) lim disty(x,Xp) = 0, for any x in X.
h=0

Let T (1), t 3 0, be a C*scmigroup on X, with s 3 0. Actually T, (t)x, need not be

a priori defined for all t > 0. More precisely, we shall only assume that T (0) =

Idy, T (t+s)x, = T (s)T, (Ox, for s 3 0, t » 0 (as soon as T, (t+s)x, and T (s)T(x,

are well defined), that T (t)x, is continuous in t and x, when it is defined and

finally, that T, (t)x, is left-continuous at t, if Ty(t)x, exists on [t,t)). The

semigropus T,(t) are said to conditionally approximate T(t) on a set U C X

- uniformly on an interval I = [ty,t,] € RY if there are a constant h(L,U) > 0 and a

- function n(h,I,U) defined for 0 < h € h(I,U) such that

2.2) Iim nh,LU) =0 :
h=0 {

and, for any ? < h € h(L,U), if u € U n X, has the property that T(t)u, T, (t)u are

defined and belong to U for t €[0,t,)] where t; < t, € t;, then

(2.3) HT(tu - T, (tully € n(h,,U) for t, € t €1ty
The semigroups Ty (t) are said to approximate T(t) on a set U C X uniformly on an

interval I ¢ RY if Ty(t) conditionally approximates T(t) on U uniformly on I and

if, moreover, for 0 < h € h(1,U) and any u € U n X,, the functions T(t)u, T, (t)u

are defined and satisfy the inequality (2.3) for all t&€ L




The semigroups T,(t) are said to nditionall roxima

uniformly on compact sets of R* if T,(t) (conditionally) approximates T(t) on U

uniformly on any compact interval I C R*, We recall that, in the following, N(B,e)

denotes the e-neighborhood of a set B in the Banach space X.

Lemma 2.). Assume that there exist a bounded set B, C X and an open set
U, O N(By,dy) for some dg > 0 such that B, attracts U, under T(t). Moreover, assume
that there exist an open set U, D N(Bo,dl) for some d, > 0 and a constant t, 3 0 such
that T, (t) approximates T(t) on U, uniformly on compact sets of {t,*). Then, for any

€3 > 0, there are hy > 0 and T, > t, such that, for 0 <h ¢ h,, fort 2 T,
T()(Uy N U, N X,) C N(By,¢,).

Proof. Without any restriction, we can assume that €, < inf(d,d,). As B,
attracts U,, there exists T, > t, such that, for t 3 T, T(t)U, C N(B,,€,/2). Thanks
to the hypothesis (2.2), there exists hy > 0 such that, for h € hy, n(h,27,U,) € €,/2.
Therefore, for h € h,, for T, €t € 21, T (WU, 0" U; N X,) C N(By¢€,). Let us
remark that Uy n U, N X, # ¢, because U, N U, D N(B,inf(dgd,)).

Now, let us prove by induction that, for t » T, T, (t)(U, n U, n X,) C
N(Bg,€,). Assume that, for T, € t € hT,, T, (t)(U, N U; N X,) C N(By,€,) and let us
prove this property for T, € t € (n+1)T,. If nT; &« t € (n+])Ty, t = (n-1)T; + T with

T, €T €27, Letu, € U NU, NnX,; we have:
T (Dug, = TUDT, (n-DTHug,

By the induction hypothesis, T, ((n-1)Ty)u,, € N(Bye,) N X,, and hence,
T, ((n-1)THuy, € U, n U, VX, Therefore, on the one hand, T(T)T, ((n-1)T)ug, e

N(B,e€,/2), and, on the other hand,

HT(T) T, (a-DTugy, - T (DT ((n-1)Tuglly € €5/2 .




Finally T (T)T,((n-1)Tpu,, € N(Bge€,), for T, € T € 27, , ie, T (Yuy,  N(Bj.ep)
for T, ¢ t € (n+1)T,
If the dynamical system T(t) has a local compact attractor 4, the hypotheses

of Lemma 2.! can be weakened as we shall see below.

Proposition 2.2. Assume that there exist a compact set A C X and an open
neighborhood N, of A such that A attracts N,. Suppose that there are constants h, > 0,
8, > 0, ty 3 0 and two open neighborhoods Ny Ny of A. with N; C N, C N(N,.6) C
N,, such that, for 0 < h € h,

(i) T(t)N, CN, fort 30,

(ii) T (t)N; N X,) C N, for 0 €t € tg,

(iii) for any x, c N(N,,8,) N X,, there exists t(x,) > 0 such that

T, ()x, € Ny, for 0 €t € t(x,)

Also assume that T,(t) conditionally approximates T(t) on Ny uniformly on compact
sets of [ty,+=). Then, for any €, > 0, there are E > 0 and T, > t, such that, for 0 < h

£ IT and t 3 T,
(2.4) T (N, N X,) C N(4,¢).

Proof. As T,(t) conditionally approximates T(t) on N4 uniformly on compact sets
of [ty,+=), for any t, > t,, there is a positive number }_1(t1) so that n(h,[t,t,,N;) <
8,/4, for h ¢ E(tl). For any x, € N, n X, and any t, t; €t € t;, we want to prove
that T, (t)x, S Ng, because this will show that | [T(t)x, - T,(t)x,| Ix € n(h,[tyt,],Ng)
for t, €t € t; and we may apply Lemma 2.1. Assume this is not the case. Then,
by (ii) and (iii), there exists t,, t, < t, € t; such that T, ()x, € Ng for 0 €t < t,
and T,(t,)x, & Ng. But then T, (t)x, € N(N,,8,/4) for 0 €t < t, and hence Ty(t)x,

EN(Nz,SO/Z), which is a contradiction. This proves the proposition.

»
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Remark 2.3. If 4 is a local, compact attractor under the semigroup T(t), then A

is stable and there always exist neighborhoods N..N, satisfying (i) in Proposition

2.2

To state the next result, we need some additional terminology. Following
[Hale, LaSalle and Slemrod] (see also [Hale and Lopez]), a semigroup T(t), t # 0, on
a Banach space X is said to be asympotically smooth if, for any bounded set B C
X, there is a compact set J = J(B) C X such that J attracts the set (xE B: T(1)xE B
for t 2 0}. A special case of asymptotically smooth maps are a-contracting
semigroups (see [Hale and Lopez]). In particular, T(t) is a «-contracting semigroup
if T(t) = S(t) + U(t) where U(t), t 3 0, is completely continuous and S(t), t # 0, is a
bounded linear operator for which there is a 8 > 0 such that | |S(t)| Ix € exp(-Bt),
t 20 '

The next result gives conditions for the existence of compact attractors 4, for

T,(t) and the lower semicontinuity of these sets "at h = 0",

Theorem 2.4. Assume that T(t) has a local, compact attractor A and that the
hypotheses of Proposition 2.2 are satisfied. If each T, (t) is asymptotically smooth.
then there is hy > 0 such that, for 0 < h & hy, T, (t) admits a local. compact attractor

Ay, which attracts N, N X,. Moreover, 64(4,,4) ~0as h - Q.

Proof. From Proposition 2.2, it follows that TNy N X,), t 3 0, belongs to a
bounded set in X,. The results in [Hale, LaSalle and Slemrod] (see also [Hale 2})
imply the existence of a compact attractor A, for T, (t) which attracts N, n X,.
Owing to Relation (2.4), we can take Ay, € N(4,¢€,). Since ¢, is arbitrary, we obtain

the result.

Corollary 2.5. Assume that T(t) has a local compact attractor A and that the

conditions of Proposition 2.2 are satisfied. If each space Xh is finite-dimensional, the

S e

‘\$ ----- _-‘ . . ., g - >.-. .~.~'A~.". . .
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conclusions of Theorem 2.4 hold.

In the general case the hypotheses of Theorem 2.4 do not enable us to give any
information about the distance 64(4,4,). However, if A is reduced to a point x,,
then, of course, under the hypotheses of Theorem 2.4, 8(4,4;) -~ 0.

In the next result, we assume the attractors for the approximate semigroups

exist and conclude that the original semigroup admits an attractor.

Proposition 2.6. Suppose there are bounded open sets N, C N, C X and positive
constants €, ?o, hy, to, 8, such that, for each 0 < h € h,, the semigroup T,(t) has a
local compact attractor Ay C X, with N(4,,€;) C N, and that

(i) A, attracts N uniformly, that is, for any €, > 0, there isa 1, > 0,

independent of h, such that T, (t)(N; N X;) C N(A,,e,) for t 3 T,,

(ii) TN, N X)) C N, nX,, forallt30,

(iii) T()N; CN, for 0 €t € t,

(iv) T(t)x is well defined for x € N(N,eo) for 0 &t € B,
Also assume that T, (t) conditionally approximates T(t) on N(N,e,) uniformly on

compact sets of [ty,+*). Then, there exists T 3 t, such that, for t 3 T,
(2.5) T(t)N; C N,

If, in addition, T(t) is asymptotically smooth, then T(t) has a local compact attractor A

attracting N, and, for any € > 0, there exists hy > 0 such that, for 0 < h € h,,
(2.6) A C N(A,,e).

Proof. Let us first show that

(27) TN, € N(N,,¢;) for all t 3 0

Owing to (iii), T(t)N, C N(N,e,) for 0 € t € t, Suppose that the property (2.7) is
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not true; then there exist x € N; and t, > t, such that T(t,)x € N(N,e€,)) and
T(t)x € N(Nz,eo) for 0 €t < t, (the existence of t, is ensured by (iv)). Thanks to
the approximation property (2.1), there exist a positive number h, and, for 0 < h ¢

h,, an element th N, N X, close enough to x so that, for 0 €t €t,,0 < h €h,,
€

28)  IT(Ox, - TOKl < 3

Moreover, there exists hy > 0, with hg € inf(hj,h,) such that, for 0 < h € hg,

29)  0ftguty V(NG 6q) < 2 .

Thus, since T, (t) conditionally approximates T(t) on N(N,e,) uniformly on [t,t,],
(2.8), (2.9) and (ii) imply that T(t,)x € C1(N(N,2¢,/3)), which is a contradiction.
Then (2.7) is true.

Next we show that T(t)N; C N, for t 3 T, where T 3 t, is a constant. Owing
to the property (i), there exists T 3 t, such that, for 0 < h € h;, T,(t(N, n X,) C
N(4, ,€,/4) for t 3 T. Now let x € N, be given. As above, there exist a positive
number h,, with h, € h,, and, for 0 < h € h,, an element x, € N, N X, close to x

such that, for 0 < h € h,,

€
(2.10) HT(Dx,, - T(Ox]ly < -4—° for all t, with 0 €t € 2T
and
€
(2.11) n(h,[t,,2T]), N(N,,€0)) < T°

As (2.7) holds and T,(t) conditionally approximates T(t) on N(N,e¢,) uniformly on
[te:2T), we derive from (2.10) and (2.11) that T(t)x € N(4,, 3¢,/4) CN,, for T €t ¢
27,

An easy induction, similar to the one of the proof of lemma 2.1, shows that

T()x EN,, for t 3 T.

If, moreover, T(t) is asymptotically smooth, we conclude, by using a result of
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[Cooperman] that T(t) has a compact attractor 4 C N,, attracting N, It remains to
prove (2.6). Let € > 0 be given. By (i), there exists T, > te» independent of h, such
that T, ()N, N X,) C N(4,,¢/3) for t 3 T, and for 0 < h € h,. Due to the

compactness of A, there exists hg, 0 < hy € h,, such that, for 0 < h € hy, with each

element x € 4 we can associate an element Pyx in N; N X, such that
HT()x - T(t)Pthx €e/3 for 0 €t €T,

Finally, there exists hy, 0 < h; € hy, such that, for any x;, N, nX,,
HT(Ox, - Ty(tx,llx € €/3 for t, €t €T,

Thus, for 0 < h € h,, T(T,)x N(A,.€), for all x in 4; and from the equality

T(1,)A4 = A, we deduce the inclusion (2.6).

Remark 2.7. Property (2.6) means that 6,(4,4,) = 0 as h = 0. Let us remark that,
under the hypotheses of Proposition 2.6, 64(4, ,4) also tends to 0 as h tends to 0.
Indeed, as 4 attracts N, for any €, > 0, there exists T, > t; such that T(t)4, C
N(4,€,/2) for t 3 t;. On the other hand, there exists h > 0 such that, for 0 < h <
h, N(h,[t,TLN(Np.€0)) € €,/2. Thus, Ty(t,)4, C N(A,e,) and, since Ty(t)d, = A,

A, C N(A,¢,), for 0 <h € h,

Remark 2.8. The assumption (i) in Proposition 2.6 that 4, attracts N, uniformly is
a very strong condition. However, one would expect numerical procedures to have
such a property. The detailed structure of the flow on the attractor A,, could vary
considerably with h. This depends on the flow defined by T(t). Consider, for
example a scalar equation u= f(u), u € R, where the flow is given by ')0—)—0{—
If one approximates this flow numerically, two situations could arise. One could

obtain either the approximate flow —)—0—(— or Mo—)—o-f- . The

global attrractor in one case is a point and in the other is a line segment. The



global attractor for the original problem is a line segment. For one of the

approximation schemes, the attactors A, approach a point as h » 0 which is a local

attractor for T(t) and, for the other, 4, approaches a line segment which is the

' global attractor for T(t). If the flow on the attractor for T(t) is less sensitive to
small perturbations, this situation will not arise.

Let us now turn to the question of how close A, is to 4 with the measure of

closeness given by 86y(4,,4). We give some results in this direction for some

particular cases.

Proposition 2.9. Suppose the hypotheses of Theorem 24 are satisfied with the
associated function n(h,I,Ng) = ch7° Jor some positive constants ¢, 7Y,, independent
o of h and 1 C [ty,®). Then there is a constant ¢, > 0 such that §4(4,,4) ¢ c1h7° Jor

0 <h ¢h,

Proof. The proof follows from the proof of Proposition 2.2 and Theorem 2.4 using
- the special function n(h,I,N,) = ch7°.
The hypothesis on n(h,I,Ng) in Proposition 2.9 is not usually satisfied. A

more reasonable condition on n(h,I,N,) is given in the next result, but then we

must impose stronger attractivity properties of A.

Vg aTa5afa e

Proposition 2.10. Assume the hypotheses of Theorem 2.4 are satisfied with the
t

associated function n(t,[ty,t,},Ng) = coh7°cq° Y for some positive constants Co Yoo %o

independent of h and t,. If there are an open neighborhood U of A and positive

- constants ¢, By such that

-B
s (T(HU,4) s cie” 9,130,

LA

then, for h € h,, we have

s

':‘v‘\v 'r'r’;,".




6y, 4) € ch 00/ (%0t

for some positive constant .

Proof. If

t, = log o h7°B°/(a°+B°) R

.1
By 2
then B(T(HU,4) < coh7°q’/(°6+%) for t 3 t,. Since 4, is invariant, for any

X, € 4,, there is a y, € 4, such that x, = T,(t,))y,. If x = T(t,)y,, then

1-o, /B % B/ (q +8;)
”xh - Xllx = “Th(tl)yh - T(tl)yh llx €cq %7 %o Clh 0% 1% o

This completes the proof.
Remark 2.11. If T(t) is a gradient system (for the definition, see [Hale, 3)
for
which there is a t; > 0 such that T(t) is either compact for t > t, or an
o-contraction, and if the set of equilibrium points E (i.e. the points x such that
T(t)x = x, t » 0) is bounded, then we know that T(t) has a compact attractor A.
If, in addition, each element of E is hyperbolic, then E is a finite set, dim W¥(®) <
+= and 4 =¢kéW“(¢) where WY(¢) is the unstable set of ¢. Furthermore, there is
an open neighborhood U of A4 such that 8, (T(t)U,4) = 0 exponentially as t ~ +=.
Thus, if the approximate semigroups T, (t) satisfy the hypotheses of Theorem
2.4 with n(h,[tg,t,),Ng) = coh%’e%‘, T,(t) admits a local compact attractor 4, for h
small enough and, by Proposition 2.10, we obtain a good estimate of 8(4},4).
Now assume that, for h > 0, T,(t) is a gradient system. Then, one can prove
that, for h small enough, the set of equilibrium points E, of T, is finite and has
the same cardinality as E and one can give an estimate of 5x(E,E;) and 84(E,,E).

Moreover 4, = U WY(¢,) where WY(¢,) is the unstable set of ¢,. (For more details,
¢, EE,

.

.
b
h)
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see [Lin and Raugel]).

In Remark 2.11, we have encountered a situation where the conditions of
Proposition 2.10 are satisfied. One would expect that the hypothesis in Proposition
2.10 that T(t)U - 4 exponentially as t - += will be satisfied in specific
evolutionary problems at least generically with respect to the vector fields. A
more precise statement is needed and certainly is nontrivial.

Let us end this section by pointing out that in some cases the semigroups
T,(t) do not conditionally approximate T(t) on any open set V C X. In this case,
one has to use other ways to prove that T, (t) admits a local compact attractor A,
for h small enough. In section 7.2 we shall encounter a typical example of this

case.
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3. Approximation of Sectorial Evolutionary Equations with Special Projection
Methods.

Let A be a sectorial (linear) operator on a Banach space X. We recall that A
is sectorial if and only if the semigroup e¢™A' generated by A is an analytic
semigroup; and if A is a sectorial operator on X with Reo(A), where o(A) denotes
the spectrum of A, then, for any « > 0, one can define the operators A™* and A%
Moreover, if Reo(A) > X > 0, for any « 3 0, there exists a constant ¢, < +® such

that
HA%AY (L x) € Cot %™, t > 0.

If A is a sectorial ooperator on X, then there is a real number a > 0 such that A,
= A + al satisfies Rea(A)) > 0. If we define X* = D(A]), « 3 0, with the graph
norm | x| |x°‘ = | JAYx|1y, x € X% then X® is a Banach space normed by ||-||xq o
(for more details, see [Henry, p. 26-29)).

Now we consider the nonlinear equation

u =
Ldt + Au = f(u),
(3.1)

u(0) = u,,

where there exists a real number « € [0,1] such that f: X% - X is locally Lipschitz
continuous (i.e. f is continuous and, for any bounded set U in X% there is a
constant k such that, | [f(u) - f(v)[ Ix € k[ [u - V| g(a, for u,v in V).

A solution of (3.1) on [0,T) is a continuous function u: [0,T) = X% u(0) = u,,

which satisfies the relation

t
(3.2) u(t) = eAtug + J' eA0)f(u(s))ds, 0 ¢t < T.
0

P




One can prove (see [Henry, p. 54-57, 62-65]) that, under the above hypotheses on A,

f, there is a unique solution of (3.1) on a maximal interval of existence [0,T ). If,
0

in addition, f is a C’-function in u, the solution u(t,uy) is a C™-function in (t,u,)

on [0,T, 0).

e,

Here we assume that all solutions are defined for t 3 0 so that we can
introduce the map T(t) ; X% - X% t 3 0, defined by T(t)u, = u(t,uy) and obtain a
o C™-seimgroup on X with r 3 0 (we also suppose that T(t) has a local compact
attractor A which attracts an open set O D A (see [Hale 3] for the existence of A).
Remark 3.1. We may always assume that Reo(A) > » > 0. Indeed, as A is a
sectorial operator, there exists a positive number a such that, if A, = A + al,

Reoa(A;) > X > 0. Then we replace equation (3.1) by

Y

du 4 A= f(u) +al
dt
3.1)

S u(0) = u,

Therefore, we suppose in the sequel that Reo(A) > X > 0. We assume also that

N
« 2 1 2

a a4 a

o(A) consists of isolated points X\ only with no accumulation in the finite part of
C (i.e. = is the only possible accumulation point) and that each X is of finite

order. We order the points Ay in such a way that

» <Re); € Red, €... ¢ Red €Rel € ...,

where Re) = +2asn = + =

We denote by & the gencralized eigenspace corresponding to )\, by Py the
projection from X onto the space [¢,9,,..,8y] and by Qy the projection I - Py, We
assume that, for 0 € B8 < I, | [Pyl lL(xB;xq is bounded by a constant Kg > 0,

uniformly with respect to N. By [Henry, p.21], for any € > 0, for any integer N,

D
AL S T

there exists a constant Ke N such that

e,
-
A
-
K
]
i
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) -(RQXN+1-€)t
(3.3) HAte Qi x. x) € Ke. N fj , for j = 0,1;

Below, we assume that, for 0 € B < 1,

(3.4) li - B=20
. 1im = .
Ny (Re XN“-G)
this condition being usually satisfied.

Now let us consider the following equation on Xy = PyX:

d
% + Auy = Pyf(uy),
(3.5)y

up(0) = ugy »

where ugy € Xy Equation (3.5)y is an ordinary differential equation. Let us
introduce the map Ty(t) : Xy = Xy, defined by Ty(thuyy = up(t,ugy), as long as
up(t,ugy) exists. Ty(t)uyy is continuous in t and ugy, when it is well defined and,

if Ty(t)ugy exists on [ty.t,), it is left-continuous at t,.

Theorem 3.1. Under the above hypotheses, there exists a number N, > O such that. for
N 3 N, T\(v) admits a local compcat attractor Ay which attracts an open set N, N

Xy» Where Ny is independent of N. Moreover, By(Ay,A) * 0 as N = +=,

Proof. Clearly, Theorem 3.1 is proven, thanks to Corollary 2.5 and Proposition2.2,
if we show that there are constants &, > 0, N, > 0, and three open neighborhoods
N,, N,, Ny of 4 such that N, € N, C N(N,,6;) CNg N, CO, and

(i) T(ON, CN, fort 30,

(ii) for N 3 N, for any t; > 0, if T(t)ugy and Ty(t)uyy belong to Ny for 0 ¢

t €7, with T €t,, then, for 0 €t €T,
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(3.6) HT (g - T(t)UONHxa ¢ n(N,[0,t,},Ng)
with

(3.7) lim  n(N,[0,t,],Ng) = 0.

N-4®
As A is a compact attractor, there are two open neighborhoods N,,N, of 4 such
that (i) holds and N; C 0. Let §; be a positive real number and set Ng = N(N,,6).

As f is locally Lipschitz continuous, there exist two constants M, > Oand L > 0

such that

(3.8) ¥ u, v € N(Ng8), If(w) - f(Vll € Lilu-vl|
and

(39) Y v ENNGS), lIf(Mllyx € M,.

Now it remains to prove the property (ii); to this end, we assume that u(t) =
T(thuyy and up(t) = Ty(thuyy belong to Ng. At first, we compare u(t) with its

projection Uy(t) = Pyu(t). As Py and A commute, we have:

t
Up(t) = e At Uy + I e'A(“')PNf (u(s))ds,
0

and therefore, by (3.2),

t
8() - Tylt) = | eAIQuf(uts s
0

Using (3.3) and [Henry, Theorem 1.4.3, page 26], we get

- -(R - € .
™™ Qull, € K e “ne1 T O T,

and therefore, thanks to (3.9), we have

..........................
.........................



lu(t) - T o € MK ¢ NT() I 0
0

-(Re) -€)0
-G N+1 do

M, K, \T()T(I-0)
(3.10)  u(t) - Ty®llx ¢ TRere, - T

N+1

Therefore
G.11D () - ﬁN(t)llxa ey,

where ¢ does not depend on t and lim €y = 0. Hence, for N 3 N, () €
N(Ng,8,) as soon as u(t) € Ny, o
Now we compare uy(t) with Uy(t). We have:
t
up(t) - Gyt = I e Al-8)(Pf(uy(s)) - Pyf(u(s)))ds
0
and hence

() - T g € Kocaf e ME9(t-5) (1 If (u(s)) - F(EN(Ig
0

+ 11E(up(s)) - F(Up(sHH )
or also, by (3.8),

t
[lug(t) - Ty(OI]_g € KoLCq J

(t-5)"%e 2 E(fluy(s) - Tp(s)] Lo * €xds.
0

Let us set: w(t) = (Ty\(1)- uN(t))f:M . Then we get

¢
(3.12) ||w(t)[|xa ¢ KL Cq4 I (t-s)'“ex' €nds
0

t
+ K LC. I (t-s)" N |w(s)| e ds
0

Using a more general form of Gronwall’s lemma (see [Henry, page 6]), we deducc

from (3.12) that




1-
(313) W] g ¢ exKoLCoe™ £ My
-

' where M(t,) is independent of N and is an increasing function of t;. From (3.13).

we derive:

(314)  llup(t) - Tp(O] o € exMty) ,

where M(t)) > 0 is independent on N and is an increasing function of t;. The

s p AP

estimates (3.11) and (3.14) give us the conditions (3.6) and (3.7).
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\ 4. Galerkin Approximation of Some Parabolic Equations
E: 4.1. A _general result
‘_ Let V and H be two (real) Hilbert spaces such that V is included in H with a
: continuous and dense imbedding; the space H is identified with its dual space, and
:3 the inner product of H, as well as the duality pairing between V and its dual
y space V' is denoted by (-,-) (so we have the inclusions V C H € V! where the
_ imbeddings are continuous and dense). We introduce a continuous, bilinear form
on VxV: (uw)€V xV —~a(uv) and the corresponding operator A € L(V;V"')
. defined by

: Vu vEYV, a(uy) = (Auv).

, We denote by C, the constant of continuity of the bilinear form a(-,-). We also
suppose that there are two constants ¥ > 0 and % > 0 such that

N

= (4.1) VVvEYV, a(v,v) + Y IviIE 2 NIV .

\'j Moreover, if

b(u,v) = a(u,v) - a(v,u),
.. we assume that there exists a constant C, > 0 such that
(4.2) Iblu,v)l € Clully vl -

Now we consider the nonlinear equation

CRI R B4
oo

du , Au = f(u),
dt

= (4.3)

u(0) = Ug,

k. where f : V. =+ H is locally Lipschitz continuous and y€V.

a‘-.'.

(]
LA
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If D(A) = {v € V;Av € H), then D(A) is dense in V and in H, and A is a sectorial

o operator on H so that we can define the operators A% 0 € « € 1. If
L]

R . (4.4) D(A!/?) = D(A*/2%) = V,

) where A* is the adjoint operator of A, defined by

Yu, v EV, (A*y,v) = a(v,u),

o we are in the frame given in Section 3; therefore, if we assume that all solutions
are defined for t 3 0, we can introduce the map T(t): V = V, t 3 0, defined by
T(t)uy = u(t,uy) and obtain a C%semigroup on V. [Here we also assume that T(t)

. . has a local compact attractor 4 which attreacts a bounded open set O, O D 4.

N Remark 4.1: We may always assume that 7, = 0. If 7, > 0, we can set A=

A + 7,1 and replace equation (4.4) by

: . % + Aju = f(u) + 75u
. 3)
u(0) = u,.

Therefore we assume in the sequel that ¥, = 0.

Remark 4.2: Condition (4.2) is satisfied if, for instance D(A) = D(A¥*), which is

true, in particular, if A is an elliptic differential operator, with Dirichlet

]
.

boundary conditions, the data being sufficiently regular (see (Lions] or [Kato]).

Now let us turn turn to a finite-dimensional approximation of equation (4.3).

Let h > 0 be a real parameter which will tend to 0 and (V,), a family of

\- finite-dimensional subspaces of V. We introduce the operator A, € L(V;V))
‘.‘}. defined by

X

Y

. -,
-

PO
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4.5) Vv, EV,, (A wpvy) = a(w,,v) for w,in V.

Let Q, € L(H;V,) be the projector on V, in the space H, i..
Vv €H, Vv, € V,, (v-Q,v.vy) = 0,

and let PhE L(V;V,) be the projector on V in the space V, i.c.
VvEv, Vv, €V,, a(v-Ppv,v,) = 0.

Now let us consider the following equation in V,:

du

d_th + Ay =Q,f(uy),
(4.3),

u(0) = u

where uohE X, Equation (4.3), is an ordinary differential equation. Let us
introduce the map Ty(t) : V, = V, defined by Tp(thu,, = u(tu,) as long as
u(tu,) exists.  Tp(tu is continuous in t and u_, when it is well defined and, if
Tp(u,, exists on [t,t,), it is left-continuous at t,.

In order to prove that T,(t) also admits a compact attractor 4,, for h small
enough, we need the following additional hypotheses on the spaces (V,),:

- there exists a constant m > 0 and, for any B, 1/2 € B € 1, a constant C(B) >

0 such that, for all w in D(AB),
(46)(0) |Iw - Pywlly + [IW - Quwlly € CBNT™ED)u| g
and

(46)(ii) 11w - Pywlly + [IW - Quwlly € CE™™iwil g,

where XB = D(AB) and D(A) = (v € V: AVvEH)
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The hypotheses (4.6)(i) and (4.6)(ii) are realistic and are satisfied in many cases,
when A is an elliptic differential operator [Ciarlet] and also the example 4.1

below.

Example 4.1. Let Q be a regular bounded domain on a convex bounded set in R2

In @ we are given an elliptic operator of the following form:

2
4.7) Lv =T a;x) 3—- v Z b. (x) £ 4 e(x)v,
ij=1 9x 6 x‘l

where the coefficients a, bj, ¢ are smooth enough and where L is assumed to be

iy
uniformly and strongly elliptic. If A denotes the operator -L, with homogeneous
Dirichlet boundary conditions, then the hypotheses (4.1),(4.2) and (4.4) are satisfied
with D(A) = HXQ) n H}(Q), D(AY?) = V = H{(®), H = L¥0). And one can find
finite dimensional subspaces V of H! o(®) such that the conditions (4.5)(i), (4.6)(ii)
are satisfied with m = 1. For instance, if 2 is a convex polygonal domain, we

introduce a uniformly regular family (7,), of triangulations in the sense of

[Ciarlet] where T, is made of traingles with diameters bounded by h. And we set:
48)  V, = (v, ECYQ) NHYQ) : VK ET,, v, , € Py(K)

where P,(k) is the space of all polynomials of degree € 1 on K. In this case, the
hypotheses (4.6)(i) and (4.6(i1) are satisfeid with m = 1 . Moreover, even if the

family (T}), is only regular, the hypothesis (4.6)(ii) is satisfied and the condition

(4.6)(1) usually holds (see [Crouzeix-Thomee]).

Theorem 4.). Under the above hypotheses, there exists hy > O such that, for h ¢

hy, Ty (t) admits a local compact attractor A,, which attracts an open set N, NV,

where N, is independent of h. Moreover, 8\(4,,4) = 0 as h =~ 0.

................................
------------------
......................
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. Proof. We shall prove that the hypotheses of Proposition 2.2 are satisfied by T(t)
: and T,(t) for h small enough. Clearly, it is sufficient to show that there are
I~ constants h, > 0, 6, > 0 and t, > 0 and three open neighborhoods N ,N,, Ng, of ¢
with N, € 0, N, € N, € N(N,,5) C N,, such that the conditions (i) and (ii) of
Proposition 2.2 are satisfied and that T,(t) conditionally approximates T(t) on N,

" uniformly on compact sets of [te+=). Let us prove it in three steps.

First step. As 4 is a compact attractor, there is a bounded open neighborhood N,
\: of A such that N, €O and T(t)N, C N, for t 3 0. We choose a real number € 3
Y 8_13‘_;_(_‘2 where B = Jngxllvllv and we set: N, = N(N,€,). Finally, let 8, be a
positive real number alnd define Ng = N(N,,8,). Now we want to prove that there
_. exists a constant t, > 0 such that T(O(N; N X,) CN, for 0 €t ¢ t,, Using
_. classical arguments of the theory of differential equations, we easily see that it is
sufficient to prove the following property:
- there exists a constant t, > 0 independent of h such that, for any

‘ (A) uy, € N, NV, if T, (t)u, belongs to N(up,€0+8) for 0 € ¢t € t(u,,),

where t(u;) € t;, then T (t)u , € N(u_,,€,) for 0 €t € t(up).

:': As f is globally Lipschitz continuous on N(Ng,5y), there exist constants M, > 0 and
\ L > 0 such that

(49)i) Yv € N(Ng.8,), [If(V) [l € My,

and

3 (4.9)(ii) VYv,w € N(Ng,8), |If(v) - £(W)l|y € L[Iv- w||y,.
: If u, is the solution of Equation (4.3),, u, - u, satisfies the equation

410) 4, - ugp) + Ay - ug) = Q) + Ay,

’ Taking the inner product in H of the equation (4.10) by g}(uh - u,;), we obtain:
:
=

-

2

\ '-‘
\ '*.
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(4.11) n -(uy - uplif + a(u, - g, %t(u., - u))

a(uoh’uh - uoh)

= (f(uy), ;g(u,, ~uy)) + 4

dt
"
:' But
K
" (4.12) a(u, - uoh,élt(uh -u)) = Ji%ta(u" - Uy - ug)
g + Ji b(uy, - ugy, g‘(“h - Ugp)):
so that we deduce from (4.11) and (4.12), by using the inequality (4.2), that
“d‘d; (uy - uliy + 12‘ g-t a(uy, - ugpuy - ugy) € Myl ?c:(“h - Uy
- + Cylluy - ugyllvl §, (o - uglly
&
:‘ + g'ta(uoh’uh - uoh)’
. q
- which implies that
- (4.13) gta(uh - u gy, - uy,) € MI+ Cllju, - ugl lzv
;:- + Zd% a(u,,uy - ug).
-j: Finally, integrating (4.13) from 0 to t, and using (4.1) (with 7, = 0) and the
inequality ab € 1 a? + € b2 we obtain:
- 2¢ 2
- , L 2M22C% rth . ac?
¢ “uh(th) Suplly € ——+ —L Iluh(s) ully ds + ",)Tg”lbh”v
U3
4
Thanks to Gronwall’s inequality, we derive from the above estimate that
o
\: 2cz
. g 2 —,7%
R (4.14) Huy(t,) - uglld € [—7— —r gyl e oh
”
If-,

S P ARt . e e e
N Al '1.4‘;.1'. _‘\A.“_A'.‘.A.A"J.' o e Nt e e
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If u, € N, NYV,, (4.14) becomes
2
2¢c
2t, M2 42 Ly
(4.15) [uy(ty) - ugll? [_h7_—l_ + % Bg]c Vo h

From (4.15), it is clear that there exists a constant t, > 0 independent of h such
that Property (A) holds.

It remains to prove that T,(t) conditionally approximates T(t) on N
uniformly on compact sets of [t,,+®). To this end, we begin by an estimate of
T, (Vu,, - T(Ou g
Step 2. Estimate of | [T (t)u,, - T(u | |y for 0 € t € t,, when T (T)u, and
T(T)u,, belong to Ny for 0 € T € t. We set u(t) = T(t)u,, and u,(t) = T, (t)u,. Let
us remark that

(4.16)  |IT,(Du,, - T(Oully € 1) - Qu(t)lly + 11Quu(t) - uy (Dl

Thanks to the hypothesis (4.6)(ii), we have
(417) () - Quu(tllly ¢ CAMMIuly

and it remains to estimate | |Quu(t) - u,(t)| |- The function Quu - u, satisfies the

equation

gt(Qhu - uh) + Ah(Qhu - uh) = th(u) - th(uh) + (Ath - QhA)U s
(4.18)

(Quu - u,)0) =0.
Taking the inner product in H of (4.18) by Q,u - u,, we obtain
ld
2d

(4.19) ¢ [y - Quuily + a(u, - Qu,u, - Quu)

= (f(u) - f(up),uy - Quu) + a(u - Qu, u, - Qu)

which implies the inequality
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24 1y, - Quuiy + Ay, - QuuIfy € Lilu - Quuilylu - Quull
+ Llju, - Quullyliv, - Quully

+ Co”u - Qhul kl“uh = Qhu”V

From the above estimate, we infer (after an integration from 0 to t):

t
() - Quu(tilf € [L’ + %3”0““"(5) - Quu(siy ds

2

4chy 1t
+ [L' + _72] L]lu(s) - Qqu(s)|ids.

Using Gronwall’s lemma, we finally obtain

t
(420)  Jlu(D) - Qu(tly € c*e““ llu(s) - QusI3 ds]" ?

0

where ¢ and c¢* are two positive constants independent of h. Due to the

hypothesis (4.6)(i), we have:

t t
(4.21) Uollu(s) . Qhu(s)n:,ds] Vo C(i—)h“‘U HAu(s) 11 ds] 1

0

Since g—s‘l(s) beiongs to H for s > 0, we may consider the inner product in H

of Equation (4.3) by %—;1 ; then we get, by using a relation similar to (4.12):

we ., 1d <y
1184 + 1 d atuu) HEC) il 1y + ul byl 1% by

and also

t t
(4.22) Lu%;—'ﬂ; ds € 2 I HEQ)IZ ds + 2C3 Io [ulds + cgflu(t)ff

t
0

.-
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~ Since Au = f(u) - gitl , we deduce from (4.22) that there exists a constant
“u
]
;ﬁ Co(N, 8 > 0, depending on N, and &, only such that
t
(4.23) I HAUIZ ds € co(N,.B)(1 + t,).
(]

Finally, we derive from (4.16), (4.17), (4.20) amd (4.23) that, for 0 € t € t,,

1y
ct

;: (4.24) [lu(t) - up (g € C(N,8)(1+t)e h™,
+
-’ where C,(N,,8;) is a positive constant depending on N, and &, only.

Step 3. Estimate of |[T,(t)u,, - T(thu,lly for t, € t € t;,, when T (T)u, and
. T(T)u,, belong to Ny for 0 ¢ T € t.
-
:Z To this end we at first estimate the term [|TT (T)u, - TT(T)u,lly for 0 ¢

T €t Let us set Z(T) = Tu(T). As QA = A,P,, the function P,Z(T) = TP, u(T)
'_: satisfies the equation

' %: P,Z + AP, Z = TQ,f(u) + r(;—‘t (Pu - Qu) + Pu .
Hence, Z,(T) — P, Z(T) satisfies the equation
2

(4.25) .z, - P,2) + AZ, - Pu2) = TQ(f(y,) - (w)
: + 74 (@ - Py
Y} +u, - Pou.
'_f Taking the inner product in H of (4.25) by csiit (Z,, - P Z), we obtain:
)
4 (4.26) | hﬂt(zh-thn g + a(Z,-P,Z, %t (2,-P,2)) € LIZ,-2| |\ ﬁit (Z,-P, DIy
4 + IIg-t(Z-PhZ)IIHII%t(Zh-PhZ)IIH

+ ly,, - P.,un,{ngt (Z,-P,Z)lly
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Using the relation (4.12) (where u, - u,, is replaced by Z, - P,Z) and the

hypothesis (4.2) as well as the inequality ab £ 2le a? + 25 b?, we derive from
(4.26):
(4.27) g-ta(zh - P,Z,Z, - P,Z) ¢ (L? + C3)|Z, - P, ZI%

+ LAz - Pzily +118 (2 - P2
+ llu, - Pyully .
If we integrate (4.27) from 0 to t and then apply Gronwall’s inequality, we get:

2, -2
428) 11z - Pz € VO ”U {; 11Z(0) - P, Z(ONI3
0

+ Jiluy(o) - Pyu(aN R+ L1 (2(o) - Pz Jo o]

Thanks to the hypothesis (4.6) and to the estimates (4.23) and (4.24), the inequality

(4.28) implies, for 0 €t € t,,
2 <ty 2m 2 ¢ dz 2
(4.29) HZy(t) - PLZ(t € Cp(Ng,Bp)e “h™i(1 + t))* + I IIK(C’)Hde],
0
where C,(N,,8,) is a positive constant depending on N, and &, only and T is a

positive constant. But, using [Henry, page 71], one easily proves that there are

two constants K, > 0 and K, (N,,8,) > 0 such that, for 0 < T ¢ t,
(4300 1Ny ¢ K (N e 0t L

Since TAu = Tf(u) - T %—‘t‘ , we infer from (4.30), for 0 < T € t,
(4.31) lITAully € t, fé’ﬁs"f(v)”“ + 1(,(1\1,,t30)¢"°tl

Finally the estimates (4.24), (4.29), (4.30) and (4.31) together with the hypothesis

Gt et . R R B R . VL T O L . PN
N . «Ne . [3
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(4.6)(i) allow us to write:
HZ(D) - Z,0lly € Ky(Np8Je * T b,
and also, for t, €t €t
kgt
(4.32) Hu(t) - u(Dlly € K,(N,,sc,)-ﬁt-— h™ .
0

Remark 4.3: We also could have used the methods of [Fujita and Mizutani]
for estimating | |Z,(s) - P,Z(s)| |y.  For the estimate of | fu(t) - u, (1)} |, when u is

more regular, we refer the reader to [Thomée and Wahlbin] and to [Thomee].

Rcmark 4.4, Let Q be a regular or convex, bounded domain in R, n = 1,2,3, and
let £ : R - R be a locally Lipschitz continuous function. Then, if n = |, the
mapping { : u EHYQ) - f(u(x)) € L%Q) is also locally Lipschitz continuous. If, in

tl.. cases n = 2 or 3, f satisfies the additional condition
(4.33) Vv, Yw € R, [f(Vv) - f(w)] € C(1 + |v| + |W]) v - w|

where

o ¢ —23 for n » 3, o arbitrary for n = 2,
n-

then, the mapping f : u € H\() ~ f(u) € L%@) is also locally Lipschitz continuous.
If the condition (4.33) is not satisfied, we have in general to work in another

space than HY(Q) (see Section 4.2 and Example 4.2 below).

4.2. An cxtcnsion of the previous result.
Let us again consider the operator A, introduced in the section 4.1, that
satisfies the properties (4.1), (4.2), (4.4). Now we assume that f : V = H is no

longer Lipschitz continuous. But instead, we suppose that A is a sectorial

operator on a Banach space Y € H and that f : Y* -~ Y is locally Lipschitz
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continuous, for a real number «, % € a < 1. Furthermore, we assume that the

» 4555

following continuous inclusions hold:

: . (4.34) DyA) G Y!Q VG YG H

= where Dy(A) = {(y EY: Ay €Y} and Y = Dy(A).
We assume that all the solutions u(t,u,) of (4.3) are defined and belong to Y

-
:: fort 20, if uy € Y% Thus, the map Tyt) : Y& = Y% t 3 0, defined by Ty(tu, =
b1 . . .
B u(t,uy), becomes a CC%semigroup on Y% Finally we suppose that Ty(t) admits a

compact attractor 4 which attracts a bounded open set O O 4. Then there exists an
"f open neighborhood I:Il of A4 such that I:Il C O and 'I‘Y(t)f:ll C 1:11, fort 3 0.
¥ >
. Now we introduce a function T which is globally Lipschitz continuous from
N V into H, coincides with f on O, and we consider the equation
- U 4 AT = f(0),
. dt
- (4.35)

U0) = u, .
+ -
"': Obviously, if uy, € N, Gi(t,uy)) = u(t,uy) for t 3 0. Let (V,), be the family of
= finite-dimensional subspaces of V introduced in Section 4.1. We suppose that the
o«
o spaces V, are included in Y%, satisfy the conditions (4.6) and the two following
”
y assumptions
(4.36)(i) for any B, « < B € 1, there exists a constant 8(«,8) > 0, such that, for v
':: in YB,
s
NS
A IV - Ppvll o € Ch2™8@B) )y o)
Y Y

and

(4.36)(ii) there exists a constant 8, 0 < 8, <2l , such that, for any v, in V,,
<
N
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We consider the approximate problem

(4.37),

for uohe V,. We introduce the map "i'h(t) :V, =V, given by ?rh(t)uoh = Tp(tu,,).

Since f is globally Lipschitz continuous, "I'h(t)uoh exists for any t 3 0.

Thecorem 4.2. Under the above hypotheses. there exists hy > 0 such that, for h ¢
hg, fh(t) admits a compact attractor A, which attracts the open set FJI n v,

(where KII is given above). Moreover, SYa(:!h,A) - 0ash -0

Proof. Let t, > 0 be a fixed real number. For any t; > t;,, we are going to
estimate ||Ty(t)u,, - Th(t)uohllya for t, € t € t;,, when u, € N,. We set u(t) =
Ty(tu,,, (1) = T, (u,. Recall that u(t) = T(t). Due to the conditions

(4.36), we have:

Hu(t) - B (0] o €1ECE) - Phl'i(t)ll‘{:x + Py u(t) - ﬁh(t)llya

-2mb
¢ Ch28( @By 5 + cn’ AIPLE(Y) - Ty(oll
Y v

where « < B < 1.
Arguing as in Section 4.1 (see Estimate (4.32)), we get:
kot

-2m6 ~ 31
h QPG - Tp(t)lly € Ky(Np) 9t—- h
0

zm(x/z-ea)

Finally, by using [Henry, page 57], we deduce from the above estimates, for t,

€t <t
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~ ~ 5°1 2m(1/2-90_)
(4.38) Hlu(t) - Tt ya € K (BN, S—t—- sup(h a1y 2mB(a,B))
0

Since 8, < , (4.38) implies that the hypotheses of Proposition 1.1 hold and

1
2
Theorem 4.2 is proven.

Example 4.2. Consider the equation
du . Ay = f(u
at (u),

(4.39) u/on = 0,

u(t)/t=0 = U,

where, for instance,  is a convex polygonal domain in R2 If the function f :
R - R is locally Lipschitz continuous, but does not satisfy the condition (4.33),
we cannot work in the space V = HX0). The map f : w € Y¥ = f(w) € Y s
locally Lipschitz continuous if Y = L%f) and « > % ,sor,if Y = LP(Q), p > 2
and « 3 % . (Indeed in both cases, Y* G L™()).

Now assume that (4.39) admits an attractor 4 in Y% which attracts a

bounded set O D 4. So we can introduce the quantity

(4.39) B, = max ||V|| . .
° o My

One easily constructs a function f satisfying

f(x) for x| € By,

(4.40) f(x) =
0 for Ix] 3 2B,

The map f:w€EV *-l:(w) &€ H is globally Lipschitz continuous and coincides

with f on O.
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o Let us give an example of spaces V, in the case Y* = H*¥(Q) n Hé(ﬁ),
o,

;j % < « < I. Let (T,), be a uniformly regular family of triangulations in the
S . sense of [Ciarlet]. We set:

\ _

s Vi = {v, € CHQ) n HYD) : vl € Py(K), YK € T})

ry where P4(K) is the space of all polynomials of degree € 3 on K. Then, of
j:: course, the hypotheses (4.6) are satisfied with m = 1. Condition (4.36)(i) and
& (4.36)(ii) hold with 8(csB) = B - « and 8, = « - 15 .
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5. Semi-discretization in Time of Some Parabolic Problems.

We keep the same notations and the same assumptions as in Section 4.1, but
here we moreover assume that the operator A is gelf-adjoint and has a compact
resolvent. (The generalization of the following results to the case where A is
not self-adjoint, but satisfies the conditions (4.2) and (4.4) is left to the reader). As

in Section 4.1, we assume that 7, = 0 and we consider the nonlinear equation:

du |, Ay = f(u),
dt
(5.1)

u(0) = u°,

where u® € V and f € C?*(V;H), for instance. The hypotheses on f can be
weakened. Now let us turn to a semi-discretization in time of Equation (5.1) by a
single step method. More precisely, let k be a positive time increment, let t = nk,
n 2 0, and define an approximation u_ of the solution u of (5.1) at the time t_ by

the recursion formula

u .y = (1- (1-8)kA)(1 + 8KA)u_ + k(1 + 6kA)f(u,)

(5.1),
u, = u,

1
where & 0 ¢ 1.
cz<

Remark 5.1. The results that we are going to prove below are also valid if we
replace f(u,) in (5.1), by f(Oun‘H + (1-8)u,). But then the "linearized” scheme (5.1),
becomes a nonlinear one.

More generally the following results are also true if we replace (5.1), by a

scheme that is strictly accurate of order 1 in the sense of [Brenner, Crouzeix,

Thomeée] and is of the form:
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m
, = r(kA)u + Kk r qj(kA)f(un), ;
=1

un+

(5.2),
Ug = U7, t

where r, q,,..,q, are rational functions of the variable z which are bounded,

e o

as well as zq(z), 1 ¢ j € m, for z 3 0, and where Ir(z) < 1, for z 3 0, and

s ir(*)] # 1. The proof, in the case of the schemes (5.2),, uses the same
arguments as below and the property that r(z) can be written as ﬁm t

where o is an adequate positive constant (for more details, see [Raugel)).

T

Now we introduce the mapping T, € L(V,V) defined by Tkuo = u; where u,

R LR i I

it unt -2

is given by the formula (5.1),. For any integer n » 1, T"u® = u_. Let us remark
k k n

that T, is well defined on the whole space V and that T} : N = C%V,V) is a
discrete semigroup. Although the sections 1 and 2 deal with CP%semigroups T(t) : ot
Rt = CY%V:V) only, the definitions and the results contained there obviously
extend to the discrete semigroups. For instance, a set B C V is said to attract a set
C CV under T, if, for any ¢ > 0, there is an integer n, = ny(B,C,e) such that Tf C
N(B,e) for n 3 n, (the definitions of a local attractor and an attractor are
unchanged; for more details, se¢ [Hale, 1], for instance).

Here we suppose that the map T(t) : V ~ V, t 3 0, defined by T(t)u® = u(t)
where u(t) is the solution of (5.1), admits a local compact attractor 4 which attracts

a bounded open set O, O D A.

Theorem 5.1. Under the above hypotheses, there exists ky, > 0, such that, for k ¢

ko Tﬂ admits a local compact attractor A,, which attracts an open set N, where

T TR R s TR

N, is independent of k, N, D A, for every k. Moreover 8y(A,,4) = 0 as k = 0.

The remainder of this section will be devoted to the proof of Theorem 5.1. But,

beforehand, let us recall the following discrete analogue of Gronwall’'s lemma, the
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proof of which is left to the reader.

Lemma 5.2. Let (a),, (b)), (c,), be three sequences of positive real numbers
such that (c.), is monotonically increasing and
n-1
(5.3) an+bn(cn+x£ a, for n31and \>0,
m=0
with
ag + by €¢c5.

Then, these sequences also satisfy
(5.4) a, + b, €¢c, exp(zn) for n » 0.

Only for the sake of simplicity, we consider that the space V is equipped with

the norm:

(5.5) W E V, [IVly = (Av,v)V/2

Hence the dual norm on V' is given by
W!E Vv, v, = (Alvi vi/2

Proof of Thecorem 5.1. In order to prove Theorem 5.1 we shall apply the
following modified version of Theorem 2.4, the proof of which is left to the
reader. Clearly the conclusions of Theorem 2.4 and hence of Theorem 5.1 hold,
if the following conditions are satisfied:

There exist four positive constants k,, 6, 8,, %, with «, > ky, and two open
neighborhoods N,, N,, of 4, with N; C N,, such that, for 0 < k € k,

(i) T, is an asymptotically smooth map (this condition holds in

particular, if T, = T,, + T,,, where T,, is completely continuous and

t,, is a linear strict contraction);
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(i) TN, € N, for t » 0,
“ i) TN, €N, for 0 ¢n ¢ =2,
5‘, (iv) T N(N,8;) C Ny where Ny = N(N,8, + §,);
: and
: (v) for any a; > o« there exists a constant ky(«;,Ng) with 0 < k(e Ng) <
) ks and a function n(k,x,Ng) defined for 0 < k € ky(a,Ng) such that
(56)  lim nkeqNy) = 0,
-
: and, for any 0 < k € kg(e,Ny), if ul € Ng has the property that 'l'l‘,u0 and

T(nk)u® belong to Ny for 0 € n (i: and 0 € nk € o« + kj respectively
. (where o € a, € “1)' then

(57)  NTu® - Tkl € Akeq,Ny) for =2 < n ¢ =2
N Now let us show in four steps that the above conditions are satisfied.
& 1) By (5.1),, we can write, for any W’ €V,
N
; Tu® = [(148kA)u® + k(1+6kA)™f(u)] - (1-6)kA(1+6kA)u®
\
.r = T,u® + Tyul
: Let B be a bounded set in H; for any v € B, we have | [KA(1+8kA)v| | €
X
‘_ Vil Hence, for any fixed positive k, (1+8kA)!B is a bounded set in
D(A). Since D(A) C V is a compact embedding, this proves that T, is
: completely continuous. On the other hand, as A is an elliptic operator,

Ty for k > 0, is a linear strict contraction as soon as 26 - 1 > 0.
Condition (i) is proved.

2) As 4 is a compact attractor, there is a bounded open ncighborhood N, of 4

such that N, € O and T(t)N; C N,, for t » 0. Let B, = r:]éaﬁll Ivl Iy and

B, = max | [f(v)| ly; we set € = 4(B} + B))!/? and N, = N(N,,¢). Finally, we
1
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choose a real number §, > 0 and we set 8, = 2[(B, + €, + 5 + B!/

where B, = max |If(V)lly.
VEN(N,.8,)

Let us remark that the condition (iii) is an immediate consequence of the

following property:

there exists a constant « > 0 independent of k, such that, for

any u® € N, if TPu® belongs to N(u’ey), for 0 ¢ n ¢ B(k,u%/k,
(A)
with 0 € B(k,u® € o« - k, then TR u® belongs to N(u%e,) for

L 0 € n € B(ku%/k + L

Let W€ N,. We set u, = T} u’, @, = u_ - u® and we assume that, for 0 € n

< B(k,u%/k, T? u® € N(u%¢,). By (5.1),, we have
(5.8) U - U, + kA(8T, + (1-8)T, ) = kf(u,,) - kAu®.
Taking the inner product in H of (5.8) by §_ - § _,, we obtain
I, - Sl o+ Ky - Kym i + X oo, - 5,000

€ k(f(u,_,) - 90, - T, )

+ k(f(uO),g, - 1)) + k(AT - §_)),
or also,

(A 113 - 118,115 € k L@, _ I} + kB} + (Au%,4, - ©,_,)

where L > 0 is the Lipschitz constant of f on P,

Summation over n yields:

m
(5.9) W01y € KL2 21T JE + k(m+DBY + [ Tp4lly

n=0
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where m is the integral part of B(k,u®)/k. Using lemma 5.2, we infer from
(5.9),

(5.10) [ 4ql¥ € [BF + + 2k(m+1)B}lexp(2kL¥(m+1)).
Let now «, be a positive constant such that

(5.11) [B2 + 2a,Bilexp(2L2a) < ¢,

-~

and choose k, such that 0 < k; < o, Then one deduces from (5.10) that U
€ N(u%ey) if m+l € o/k, for 0 < k € k,  Thus, Property (A) is shown. As

the proof of the condition (iv) uses similar estimates, it is left to the reader.

3) Some auxiliary estimates.

We shall estimate k T HT(nk)u® - TRu9 | and T [KT((n+1)k)u® - TI+1y0) -
(T(nk)u® - Tpu®) If for o o‘ m € a/k, when T:u3=(;nd T(nk)u® belong to N,
for 0 €n € mand 0 € nk € mk + k, respectively.

We set t, = nk and ¢, = T} u® - T(nk)u® = u_ - u(t). As it was pointed
out in [Raugel, proof of Theorem 2.2)], one easily shows that

m m
(5.12) k L (le,Jly + 8klle, ,lIy - k L 8(1-8)lle,,, - ¢,II3

n=0 n=0
m
¢k L |[l6e,,, + (1-8)e,ll}.
n=0
From the equations (5.1) and (5.1),, we infer:

(5.13) €h41 - Cn t kA(ecn_H + (1-6)) = k(f(u,) - f(u(t))

tn+l
. du oy _ du
I, [dt (s) dt(t"))ds

+ BkA(u(tn) - u(tnﬂ)).
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Taking the inner product in H of (5.13) by 8¢, ., + (1-8)e, + ¥,(e, ., - ¢.)

where 7, > 0, we obtain the following inequality:

Tleaalth - Liieif + L2o-Dile,,, - el + KilBe,,, + (1-0)e |}

ky kY ky
+ 71“en+1 B cn”:l +T'L“cn+1”<l N -2_l“cn”§1 + —2—1(29'1)“cn+1 B en”%l

€ KLile JNI(B+7 e,y = €. llg + el

+ OKllu(ty) - ut DI 118e , + (1-8)e lly+ Yjlle, ;- elly]

tnt1
+|| L [g—}(s) - S epas| L1184+ (1-O)eylly + Nillenyy - €nlly)

Using the inequality ab ¢ 21 a? + % b? several times, we derive from the above
€
estimate:

(514)  lle, Ji§ - lleJIf + Kll6e ., + (1-0)e lI§ + 7ylle,,, - el

+ kYl 15 - kyglledly + kyy(26-Dile,, - elly

292 2 7,kK’L? !
¢ [k 8’2 . + k‘o]”‘n”:/ + :_L_ el i
0

26-1 2
4v. 02
. k[ze= . ?aT]“““n’ -t IB

472 tnt1
25 du () . du 2,
+ [2 + 29_1] L Drral OBl GV B

n

where €, > 0 is a small enough constant.

Summation of (5.14) over n yields:

m m
“cm+l”;{ + kI (18, + (-0ely + 7, T llegy, - ey
n=0 n=0

2 kY - 2
+ kY lle v + 3 (26-1) L lle,,, - elly

n=0
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2 m m
ko2 . 7kL 2 3
[ 4 k[Z_GT + T + €4 L ”cn”V + LGL L “cn”:l
n=0 0 n=0

47 92 m
. k{zez . -2—511—] o) - ut,, I

n=0

m tn+l
+ [2 + > J 18 ) - ey ds

n=0 tn dt

Now we set 7, = sup(l,zzeell'e) and we choose ko, > 0 and ¢, > O such that,

k0?12 . % kL?
20-1 2
from the previous inequality that

for 0 < k € k, +o€g < 15 . Then, thanks to (5.12), we deduce

m m

2 2
L olleJly + L e,y - ¢lly
n=0 n=0

(5.15)  lleg gl + 1;

2 m m
¢ KOL Ll + COk I lu(t,,,) -~ vt}
n=0 n=0

m tn+1
du . 2
re®I [MIE ) - duyd as

n=0 t,

Due to lemma 5.2 we infer from (5.15):

m m 2
(5.16)  lleg, 1% + '2<— L olled} + T liegyy - €l € c(B)exp [&(eﬂﬂl] x
n=0 n=0 0

m m tn+l
[k Tty - weld+ I L [ ra O (W] ds]

n=0 n=0 n

Let us set: Bg = max |[v]|y,. Then we have:
s

m
(517) T [t )- ut )l % € 2B + k

n=0
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By [Henry, page 71), there exist two constants K, > 0 and K (N,) > 0 such

that, for 0 € K € mk + ko

u 1/2 Ko (e tkg)
(5.18) 't ||%||v + 1V II%HH § K (N ¢ :

From (5.17) and (5.18), we derive:

(519) K I [la(ty,y)- utl € k@BZ + KiNge Mo+

n=0
On the other hand, we have

m tn+1
(5200 I I du (5) - d¥¢ ) 12,ds € 2k sup du 2
0de bm de ="V elo) Iae Hys

n=

t
2 m+1 gzu 2
+ k Jt ”dtz”V'dS-
1

- -1/2 -1/2 1/2 2 -1/2 2
Since AV %—%= A2 f(u) - AY% and “%“vl = [IA ! gfllln'“’" obtain:

(5.21)  sup du 12 ¢ B2 4 max HECV)I B
192113, < B3+ max

o‘g‘tn‘.‘}-l 3

Since the inequalities (4.22) and (5.18) hold, f'(u)t%% + %% belongs to
L’([O,th];H) and one easily proves that the function td—d‘it satisfies the
equation:

. d_ Q! d!_ - ] d!_ g!_ )
i (4 0]+ aftdi.o] - [rrcan 0]+ [d] ror 0 €v;

(5.22)
(ii) [t gﬂ] = 0.

Jt=0

(Hence t daut belongs to the space H’([O,tmﬂ];H).
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For t > 0, equation (5.22)(i) also can be written as

LA TR (CAC S S S St ATl A Sl Sl Sl Aadl Sl S Aot Saf

2 du ¢l = (f'(u)di
(5.23) [t-g—t—zﬂ ’¢] + a[t dt'¢] € (U)tdt ,¢] for any ¢ €V,

Let us set ¢ = %—';‘— in (5.23); then, after an integration from 0 to t

obtain:
24 1 2 tm+1 du, 2 1 tm+
620 4 (1910 G + 7 [T e L ]
t
3 m+1 2
F [ g e
Since
r‘m |1£* @Yy |? dt € sup [if*(u)if? J‘t
0 de'ln wEN L(V;H)

3
we deduce from (5.24), by using (4.22) and (5.1R), that

*m+1 Kg(a, +k;)
(5.25) L E1SE]|2 dt € Ky € 3 1707,

K,(Ng) and K4 are two positive constants.

2
Now let us set ¢ = A"l dap! in (5.23); we get

t
1 m+1 -1/2 2 2
L A g acs 4ed o

t t
<« Io ||A™2 £ u)t g—%nu dt + i ||$’(—ﬁ

v e )o.

which implies, thanks to (4.22), (5.18) and (5.25),

m+1° we

1 ] u 2
| (u)td&HH dt
ce (L 2o

2
I

2
|3 de

-w
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b1 2 2 Kg(x,+kg)
Y (5.26) I"‘ ||A? gT,‘L”H dt € K, (Nge & 10,
o

-

where K (Ng) and K are two positive constants,

h{
N\ From (5.20), (5.21) and (5.26), we derive:
2
. m ethi 2

(5.27) X I" ||ﬂ(s) - dug )| ds ¢ k[z(Bg + max {If(v)|[F
: n=0°"t dt de ® v! vEN,
. = n 3
.T 2K (x, +k )
8 + R3(Nge 5 170 ]
Finally, from (5.16), (5.19) and (5.27), we infer:
" k m m

(5.28) Hemeal IR + 5L ledl¥ + L lleg,y - eallk
y n=0 n=0
: K, (& +k
: € k Kg(Ng) ¢ 7l ®1+ho)
' where Kg(Ng) and K, are two positive constants.
y 4) Estimate of | |T(nk)u® - TXu% |, for «y/k € n € m+l, when T *u® and
: T(nk)u® belong to Ny for 0 € n € m and 0 € nk € mk + k, respectively,
¥ where ag/k < m € o/k.
: To this end, we at first estimate the term | |t (T(t)u® - Tku®) |, for 0 <
> n ¢ m. Formula (5.1), gives:

(5.29) toy1Unire” tolUny + kA(th“un+l + (1-8)t u )

2
= kt f(u) + ku_  , + 6k® Au_,, .

- Let us set: :n = t(u - u(t)). From (5.29) and from the equation (5.1) we

-~ deduce:




............

(5.30) €

-e, + kA(een_“ + (1-8)e))

n=1

= kt,(f(u)) - f(u(t)))

tn+1
. d .d
[ [ - &, o ] o

n

+ BkA(tyu(t) -t u(t, . )

L N S

+ ke, +k(u, ;- u) + ) Aup,.

Taking the inner product in H of (5.30) by ;n+1 - e, we obtain:

n?

lleary = ally + 5 tiea iy - Sl + K2o-Diieyy, - e

5 }l"‘.}.”.}-'l

€ kllepyy - eqllg [Lileylly + leylly + [,y - ugllg)

+ kllen+l B e—n“V[ek”un+1“V + e”tnu(tn) N tn+lu(tn+1)”

t
1 n+1
07 [ - Lo Jo

MDA

Hearr !ty - Hegdly € 2k LAle i} + 2Kledi} + 2Kl ., - u i}

tn+1
. + —z-g—l [k’nun a3+ k L Hdd;(su(s))llf, ds

n

n+l 42 2 ]
+ k I: “ds’ (su(s))llv, ds|.

n

Summing the previous inequality over n and applying lemma 5.2, we get:

........................................

..............................................
..............................
..............
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- m
' (5.31) max |le 13 € C exp kLz(m+l)[k L lledl
2 0&n€m+1 n=0
m m
+ kI ”un+l B un“?l + k? L “un+“%’
n=0 n=0
+1 tm+l 42
: + k J.Lm IIL(su(s))lli, ds + k Jm nd 2su(s)||3,|d's]
0 ds o ds
. But
m m t
2 2 g [ mtl 2
(5.32) k 3:0 gy = Ul € 2K T llepyy - el + k I ||g-:l-||H ds
n= n=0 0
and
: m
A (5.33) k? I jju, 113 € k*(m+1)B; .
n=0
" Finally we derive from (5.31), (5.32), (5.33), (5.28), as well as from (4.22), (5.18)
- and (5.26) that
» _ Ko (& +k
’ max (e, lly € kY2 Kg(Nge ol Xrtho)
N 0$n€m+1
' where Kg(N,) and K, are positive constants.
- Hence, we have:
" 0 _ Tk K1/2 Kol +k )
2 (5.34) max IT(nk)u® - TEu%l, € = Ky(Nye
&%y/k€nm+1 %

And Theorem 5.1 is proven.

w'

Remark 5.2: If f is globally Lischitz continuous from H into H, one can improve

the estimate (5.34) (see [Crouzeix and Thomee (1)]).

A, & 4 4 iy Yy

e - - " - - . T .t B ot e T e e i . - e " - — - - N N *
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Remark 5.3: Now let us consider a discretization in space and time of the

equation (5.1). More precisely, if (Vy), are the spaces given in Section 4.1, we
define an approximation u: €V, of the solution u of (5.1) at the time t_ by the

recursion formula

uh 4+ (1 - (1-8)kA(1 + 8kA) "t ub + k(1 + 8kA,)IQ, f(uhy)
h
- (5.1)
: g u, =ul €V
oh h h’

(where A, and Q, are given in Section 4.1).

Then in the same way as above, one proves that (5.1)2 gives rise to a
dynamical system T} which admits an attractor A®. And 8(4},4) ~ 0 as h and k
- tend to 0.

Furthermore, if we are in the situation described in Section 4.2 and if kh2™

N ¢ C where C is a positive constant, one can define a dynamical system T*l: which

admits an attractor A4} in Y and SY o{4%t) = 0 as h and k tend to O.

-
.
-
N 4
£y
.
.
.
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6. A Remark on the Two-Dimensional Navicr-Stokes Equations.
Let 0 be a regular, bounded domain in R2%. The Navier-Stokes equations for
the velocity u(x,t) = (u,(x,t),u,(x,t)) and the pressure p(x,t), are

[ 8u 8 _ :
o vau +i§1 ui-a—:i+gradp-F in @ xR,
divu=20 in 1 x R,
(6.1) ]
u=290 on 32 xR,
L u(x,0) = uy(x) in Q

where F and u, are given and v > 0 is the kinematic viscosity. Let us denote by
H(Q) the space (H(Q))? for j = 1 or 2 and by L?(0) the space (L%(Q))%. We consider

the space
U = (¢ €(Co()% div ¢ = 0}

and denote by H and V the closures of U in L%*f) and HYR) respectively. The
spaces H and V are provided with the inner products ‘
2
(u,v) =T I ujvjdx s
Q

i=t

and

2 du, 8
(uv)) = T I My P ax
jk=1 'Q a"j a"j

respectively, where x = (x,,X,).

We also set [uf = (u,u)!/? and jlull = ((u,u))!/? for u in H and V respectively.

.....
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j.‘: Let us denote by P the orthogonal projection of L%(n) onto H. We define

:5 A = -PA to be the operator with domain D(A) = H3()) N V acting in H and use the
same notation for its extension to an operator from V into V'. Since Al is a

3:\' compact self-adjoint linear operator in H, the spectrum of A consists of an

infinite sequence

0<) €, €.

of eigenvalues (counted according to their multiplicities) A, =« as n = @ and there

exists an orthonormal basis {¢ ) 3, of H such that
Ad, = ) ¢, n=1.2,.

For any N 3 1, we denote by Py the orthogonal projection in H (and in

V,V'.D(A)) onto the space V, spanned by ¢y &, s O We recall that

livil 3 \}2?), W EY,

(6.2)
|Av] 3 32 |vl], Vv € D(A).

As Q is a regular domain, we also have:
6.3 € |Au] € ¢! Yu € D(A).
(6.3) c ”“”n’(n) |Aul € ¢ Ilulln-,m), u (A)

For u = (u;,u,) and v = (v,,v,) in H!(R) we define B(u,v) € V' by

2 v
69 @uw =T [ uk w dx wEV

jk=1"Q I 8x,

iy j

1

Then B is a bilinear continuous operator from H!(Q) x H () into V' and this
operator can be extended as an operator from Hml(n) x H n‘2(!1) into V! or H, for

appropriate values of m; and m, (see [Témam], for instance). Subsequently, we

shall use in the following inequality

r T e
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(6.5)  I(B(u,v),w)l € c,Jul ¥l vI? |AviH Fwi,

Yu €V, vE D(A), w € H.
Finally let us recall that

(B(u,v),w) = -(B(u,w),v), Yu,v,w EV.
Using the above notations it can be shown that (6.1) is equivalent to the

following initial value problem

gf‘* v Au + B(u,u) =f in H,
(6.6)

u(0) = u,,

where we assume that f(x) = PF(x) and u, belong to H and V respectively (see
[Temam] for further details). Let us point out that we assume that f does not
depend on t.

Now we introduce the map T(t): V = V, t 3 0, defined by T(t)u, = u(t)
where u(t) is the solution of (6.6). It is well known that T(t)u, exists for any t 2 0
and any u, € V and that T(t) is a CP%semigroup on V (see [Ladyzhenskaya (1) and
(2)}, for instance). In the same papers, she also showed that T(t)u, has its l_l_l'; as
t » += bounded by a constant independent of the initial data, i.e, T(t) is point
dissipative. Since T(t) is compact for t > 0, we deduce from a result of
[Billotti and LaSalle] that T(t) admits a compact attractor A which attracts
bounded sets of V (see {Hale, 2] also].

Now let us consider the following differential system on the space Vy
spanned by ¢, &,, ..., Oy :

duy

5t + VvV Auy + PyB(up,uy) = Pyf(x)

(6.6)y

up(0) = gy »




where uyy € V. We introduce the map Ty(t) : Vi = Vo t 3 0, defined by
Tn(thugy = up(t) where uy(t) is the solution of (6.6)y. As above Ty(t) is a
C°-semigroup on Vy (see [Témam] for instance). In [Témam, §14.2), it is also
shown that Ty(t)ugy has its -h_r; as t + +° bounded by a constant independent of
the initial data and of N. Thus, by [Billotti and LaSalle] Ty(t) admits a compact
attractor Ay which attracts bounded sets of Vy. But thanks to Theorem 2.4 we

obtain a more precise result given in Theorem 6.1. For related results, scc

[Constantin, Foias, Témam].

Theorem 6.1. For any N 3 1, Ty admits a compact attractor Ay which attracts

bounded sets of V. Moreover, Sx(AN,A) “0as N = 4,

Proof. We are going to show that the hypotheses of Lemma 2.1 are satisfied. Let
tyo > 0 be a real number and N, be a bounded open neighborhood of t. We shall
prove that Ty(t) approximates T(t) on N, uniformly on compact sets of [Ag+).

We set : B, = max | |v| || By [Temam, lemma 11.]1 and lemma 143}, we
have, for any N 3 |, fon} any upy €N, NV,
(6.7) sup (sup(IIT(Y)ugpdl, [IT(ugpll) € Cp,

t20

and

(6.8) sup |AT(tugl € K,
t?to

where C, Co(By) is a positive constant depending on B, only and K, =
Ko (Byty) is a positive constant depending on B, and t, only.
Now we set u(t) = T(t)usy and uy(t) = Ty(tuyy. Let t, > t, be a real number;

we at first estimate [Juy(t) - Pyu(t)|| for 0 € t € t;. The function uy - Pyu satisfies:

(6.9) 3? (uy - Pyu) + VA(uy - Pyu) = PyB(u,u) - PyB(upuy)




Taking the inner product in H of (6.9) by A(uy - Pyu), we obtain:

(6.10) 2151— lluy - Pyuli? + VA(uy - Pyu)l®
)
: = (B(u,u-PNu) + B(u,Pyu-uy) + B(u-Pyu,uy)
¢ + B(Pyu-up,uy), A(ug-Pyu)).
N
A Thanks to the estimate (6.5), (6.10) we obtain
(6.11) Lty - Pyull® + VA - Pu)i?
- < clu3lul 12 ju - Pyull/HA - Pu)HAP N - uy)
7 + ¢yl uy - PyulMAA(uy - Pyu)l
: + cylu - Pl - Pyul M3 uyd MY Aug 2Auy - Pyu)l
= + ¢ Pyu - ugd'? [Py - upl M3 uyl 12 Augl/HA(uy - Pyl
1 N
Using Young’s inequality in the form
&
“ absea9+c€bp',l<p<+~,e>0, p'=-p—,c€-—-?—‘l——
p-1 pP' el/pP-1
with p = ‘31 and € = ‘% and with p=2and ¢ = a‘-’- , we infer from (6.11),
; L luy - Pyull® € ¢l luf o]l [jv - Pyull 1ACu - Pyu)
- + Julljull? [luy - Pyull?
b

+ ljupll 1Auy] Ju - Pyul fu - Pyuil

[

+ fupll JA Ul 11Pgu - upli?l,

.
»ae

or also, by (6.7),

- -" - - " -.. u.. .
IR R LS PR 1.1}:"1}.;..:.-\."‘.'1 <
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(6.12) %; luy - Pyull® € cgllu y - Pyull?[ 1 + |Auyl]

+ Cg |{u - Pyulll |A(u - Ppu)| + |[Auyl Ju - Pyul ]
where ¢g = c4(cy) is a positive constant depending on C, only. But (6.12) is a
differential inequality of the form
z' €a + bz

By Gronwall’'s lemma, this inequality yields
[t SN
2(t) € z(0) e’ PTMMT 4 I a(s)e 3o BONT g
0

which gives, in our case, for 0 €t € ty

c 1
(613)  llug(®) - Pu(oIP € e ° LI

t
1
x I {lu-Ppu| [lu-Pyull |Auyl + {{u-Pyull |A(u-Pyu)l}ds
0
Using the properties of Py and the Cauchy-Schwarz inequality, we deduce

from (6.13) that

t
_ \ ety (14( j'o 1 jauyf?ant/?)
(6.14)  Jlug(t) - Ppu(Ol? € cq ¢

‘1 1/2 ty 1/2 ¢ 1/2
x U Il - pNun’ds] / [ZCOU |AuN|’] N 2U |Au|’ds] ! ]
0 0 0

Arguing as in [Temam, §3.1], one proves that, for N » 1,

x

! ty
(6.15) sup“ lAuledt,I IAulzdt]i ¢ (t;,60)
0 0

where c,(t,,co) is a positive constant depending on t, and c, only. Thanks to

(6.15), we can write:

.........

-----------

R
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! c,(t,,c
(6.16) I flu - Pyuli*ds PRACL
0 AN+1

Finally from (6.14), (6.15) and (6.16) we derive, for 0 € t € t,,

c(ty,Ch)
» (6.17) () - Pru(I? ¢ =120,
[ N+1
)
K
where cg(t,,co) is a positive constant depending on t; and c, only.
: Now we want to estimate ||u(t) - PNu(t)llz for t, € t € t,. Using (6.8), we
2 prove that, for t, €t €t
k2
' (6.18) lu(t) - Pyu(dl? ¢ =%
X AN+1
:: Finally, as Ang1 ~ t© as N - + = we deduce from (6.17) and (6.18) that Ty(t)
g approximates T(t) on N, uniformly on compact sets of [ty +=).
|
;
-
>
o
<
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N
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7. Approximation of the Damped Wave Equation.

Let Q be a bounded domain in RS, « be a positive constant and consider the

equation
By 420 B py = of(u)- gx) in 0 x(0,%),
a? at

(7.1) { u=0 on 80,

where g belongs to L) and (¢,) belongs to the space X = H}(R) x L¥Q). We
assume that the boundary 80 of Q2 is smooth enough or that Q is a convex domain.
Furthermore, we suppose that f € C3(R) and that there are constants 7>0,¢,>0

such that,

IfV) € Cavi*7 + 1), I (V)] € C,(vi*7 + 1),
(7.2)
If"(v)l € Cy(tvl + 1), If"(v)| € C,, for all vER.

Inequalities (7.2) imply that the map f: ¢ EH(I,(Q) - f($(x)) € L¥N) is a compact,
C%-mapping from H}(Q) into L%(). Henceforth, we equip the space X with the

norm

- 2 2 N\1/2
(7.3) (&, (”m}{(}(n)ﬂlmx.’(n)) , V(o) e X

As it was proven in [Babin and Vishik], for any (¢,) € X, Problem (7.1) has a
unique solution wu(t), for t 3 0, and the pair (u,%tl) belongs to CO9[0,+=);X).
Furthermore, if we set T(t)($,9) = (u(t)%tl(t)), fort 0, then T(t) : X = X, t 30, is
a C%semigroup on X.

Now suppose there is a constant ¢ > 0 so that f satisfies

-l w,  w T w

...........

e

LW v v ey -
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(7.4) f(v)v > -c, f'(v) > -c, for all vER.
Let us introduce the Liapunov functional V given by

ko V(o) = IQLL 9000 + 1020 + Fom) + 800800)] ax

for all (¢,¥) € X, where F(v) = Iov f(s)ds. It was proven in [Babin and Vishik]

that
\' > Ljup
(&.9) 3 IMILg lld’ll (Q) C,,

y (7.5)
Z \4 ¢ Ly .
: (0.9) 2II¢IIL2( sllﬂluo(n) 4
g where C,, Cg C, arc some fixed positive constants, and that, for t » T and
-: for any solution u of (7.1)
5 t 2

(16) V)2 @,) - v, )@, = -ZaJ I [a—“i&’-‘l] dx ds

at at T il At

The estimates (7.5) imply that the orbits of bounded sets are bounded. In

particular, there exist two functions Cy(R) and C,(R) of R such that, if
. (7.7) HeII% € R?,
14

then,
v (78)  V(T(X$.¥) € V(89) € CyR), VEER
: and
v (19) HT()(®. W € C,(R), Vt ER.
y Moreover, it was shown in [Hale, 2] that T(t) is point dissipative and is an
«-contraction. Therefore, due to a result of [Massat], T(t) admits a compact
"

»
)

0
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attractor 4 in X, which attracts bounded sets of X (see [Hale (2), Theorem 6.1)).

7.1 Approximation ial projection meth
Let us recall that the spectrum of the operator -A with domain D(-a) = H3(Q)

N H)(Q) consists of an infinite sequence
0« Xl € Xz €.,

of eigenvalues (counted according to their multiplicities), A, = +® as n =+ += and

that there exists an orthonormal basis {w ) 3, of L%(0) such that

(7.10) -Aw = A\ W

Note that (A;2w ), is an orthonormal basis of H}Q). For any N 2 1, we
denote by Py the orthogonal projection in L%*®) (and in H(Q)) onto the space Vy

spanned by w,,w,,..,wy, and we consider the following equation in Vy:

d%u 8u
—at% + 2« —aTN - AuN = 'PNf(uN) - PNg(x),

where () belongs to the space Xy = Vy x V. We can prove, as for the
problem (7.1), that, for any (¢y ,¥y) in Xy, the equation (7.1)y has a unique
solution uy(t), for t 3 0. Moreover, if we set Ty(t) (@) = (up(t),8uy(t)/8t, for

t 3 0, then Ty(t) : Xy = Xy, t ? 0, is a C%semigroup on Xy

Theorem 7.1. For any N 3 1, Ty admits a compact attractor Ay which attracts

bounded sets of Xy. Moreover, 6y(Ay,4) = 0 as N = 4=,

Proof.

1) We at once verify that, for t » T, for any solution uy of Equation (7.1),,
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a
Zn (s,x)ds.

Su Su ¢
A1) Vi), 56D - VT, @) = 2« [ jn 5

T
The estimates (7.5) imply that the orbits of bounded sets are bounded
independently of N. In particular, Ty(t)(¢y,¥y) satisfies the estimates (7.8) and
(7.9), for any (dy,¥y) satisfying (7.7). As Ty(t) is compact, the orbit through
($5-¥y) is precompact and its w-limit set must be an invariant set. Relation (7.11)
implies that its w-limit set belongs to the set Ey of the equilibrium points. Using

the condition (7.4), one easily proves that there exists a constant r, > 0 such that
(7.12) VN 3 1, Ey C By(ry),

where, for any r > 0, By(r) = ((¢9) X: | (&9 [x < r}. Let us also set BxN(r) =
By(r) N Xy. Then, for r; = 2r,, the ball By N(rl) attracts all points of Xy (i.e., for
any (Op¥y) € Xy , there exists ty » 0 such that, for t 3 ty, Typ(t)(éy¥y)
c BxN("l))- Let us remark that the orbit of BxN(’l) is included in BxN(Cl(rl)),
where C(r,) is given by (7.9), and that BxN(Cl("l)) attracts a neighborhood of
any point and, hence, all compact sets of X,. We now set: R, = C,(Cy(r))).
Arguing as in [Hale, 1, Theorem 2.1], one finally shows that Ty(t) admits a
compact attractor Ay which attracts bounded sets of Xy and is included in the

ball By(Ry) N Xy

2) In order to prove that 8y(4y,4) = 0 as N = +=, we show that the hypotheses of
Lemma 2.1 hold. Let N, = By(R,) be a neighborhood of 4. We shall prove that
T\(t) approximates T(t) on N, uniformly on compact sets of [0,+=). Let t, be any
real number. We at first estimate ||(u(t) - PNu(t),%tl(t) - a—l;tﬁ-u(t))llx for 0 €t €
where (u(t),%!tl(t)) = T(t)(éy¥y) and (By¥hy) ENy N Xy We have:

(1.13) g—:, (u - Pyu) + 2aa§t (u - Pyu) - Au - Pyu) = (I - Pf(u) - (I - Pg(x).
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Taking the inner product in L%) of (7.13) bya—at (u - Pyu), we get after an
integration from 0 to t:
(7.14) 118 (u - Pyu)(I? |+ 10 - PRuI
3t N L3 N pa(e)

¢ Y (su I-POf(u)3, . + [I(I-Py)g(x)}?
M} (éllt)),zll [H(I-Py)f (u( ))”Lz(n) [I(I-Pp)g( )”Lz (Q}
Since f is a compact mapping from H(f) into L%(Q) and u(s), 0 € s € t, belongs to

the bounded set B(C,(R,) = (v € HXQ) : | vl | ¢ C,(R,), we deduce from

H)' ()
(7.14) that, for 0 €t € t,,
8 /4y - 2 R 2
(7.15) H at(u PNU)(t)HL, @ + |u(t) PNu(t)”H},(ﬂ) € n (N,t;,C,(R,))
where
(7.16) lim n,(N,t;,,C,(R))) = 0.

N—D+O
Now we estimate | |(Pyu(t) - up(t), gt (Pyu(t) - ug®llx for O € t € t,, where

du
(up(t), T&N(t)) = Tp(t)(dy¥y). The function uy - Pyu satisfies the equation
3 o)
(7.17) 32 (uy - Pygu) + 2« Et(uN - Pyu) - A(uy - Pyu) = P(f(u) - f(uy))
Taking the inner product in L2(Q) of (7.17) with -g—t(uN - Pyu), we obtain

1 3 13 - 2
(7.18) 5 ”at (uy - Nu)”Lz @) + 2 8t (“uN PNu”H:)(Q))

Qe

L2 2
AR, +L2 o - Prilfy g,

where L > 0 is the Lipschitz constant of f in the ball I;(CI(RI)). Now using

Gronwall’s lemma, we derive from (7.18) as well as from (7.15) that, for 0 €s € t,
4,12

(1200 1Sy - PO, ) + lluy(®) - Pru@IR o <7 Lin Nyt Cy(Ry)

L3q) )
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The estimates (7.15), (7.16) and (7.20) show that Ty(t) approximate T(t) on N,

uniformly on compact sets of [0,+®).

7.2. A_more general Galerkin method.
Let h > 0 be a real parameter which will tend to 0 and (V), be a family of
finite-dimensional subspaces of Hé(n). We denote by [-,-] the inner product of

L%() and by a(-,-) the inner product of H (), i.c.,
vv € HY(0), Yw €EHL(Q), a(v,w) = faVV vw dx.

As in Section 4.1, we denote by Q, € L(L’(Q);Vh) and P, € L(Hé(n);Vh) the
orthogonal projectors on V, in the spaces L%0) and H(l)(n) respectively. We also

introduce the operator A, € L(V,;V,) defined by
Vv, € V., (A w,.vy) = a(wy,v,) for w, € V,.

We consider the following equation in V,

2
auh

du
+ 2« _ath + Ay vy = -Q,f(u) - Q.8(x),
(1.1),

a?
E-‘h’ iu.h] = (0,,.4’;,) »
at J/t=0

where (¢,,4,) belongs to the space X, = Vh x V,. As in Section 7.1, we
introduce the map T, (1) X, = X,, for t 3 0, defined by Ty(dp.%) = (uh(t),a—laﬁt 1))
where u, is the solution of (7.1),. So we obtain a C%semigroup on Xy As in

Section 4.1, we need some additional hypotheses on the spaces (V),:

(7.21)(i) there exists a constant K, > 0, independent of h, such that, for any h > 0,

HQyl

¢ K
Luimi) °
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“
N and
"~ (7.21)(ii) there exist two constants K, > 0 and 6 > 0, independent of h, such .
A that, for any w in HY(Q),
Y
' e
. -P - w € K. h .
" [Iw hw“;.’(n) + llw - Q, IILz(Q) 1 HWHH‘O(Q)
NG
- Finally we introduce the Hilbert space Y = L¥(0) x H™Y(Q), normed by |[(¢.9)l]y =
< HAZ + LI 1/2
CIOAL: + 1A Y

Now we are able to prove the following result.

Theorem 7.2. For any h > 0, T, admits a compact attractor A, which attracts
bounded sets of X, and is contained in the ball By(R;) N Xy» Where Ry is a constant

independent of h. Moreover, 5y(A4,,4) = 0 as h = 0.

3 Remark 7.3. In Section 4, we proved that 6y(4,,4) = 0 as h = 0. Here, we can no
longer prove that 8,(4,,4) = 0 as h ~ 0, because:T(t) has no longer a smoothing

action.

Proof of Theorem 7.2,

1) At first we show in the same¢ way as in the proof of Theorem 7.1 that, for any
h > 0, T}, admits a comapct attractor 4, which attracts bounded sets of X, and is
contained in By(Ry) N X,, where R, is a constant independent of h. Remark that

R, can be chosen so that 4 is also contained in By(R,).

q 2) Now let us check that, for any r > 0, there exists a constant L(r) > 0 such that,

for all v and w in the ball B_(r) ={vE& Hé(r) B |Hl (Q)S r}, we have
0

(7.22) HECV) = EOWIL @ $ OV - Wil

-
o
-
Y
4




o

A

LN LAY,
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Indeed we can write

csup J (FVO) - E(W(0)E(x)dx

JIE(v) - f(w)l] g1
@ geul)
0 1194]

HY Q)

€ sup IQI: f '(w(x)+T(V(X)'W(X)))(V(x)-w(x))@(x)dxds

10
cH(Q) e ml(@)

Hence, using the hypothesis (7.2), we obtain

¢sup & {U v(x) - w(x)[zdx] v

(7.23) HEQV) - I,
H) ¢€H0(Q)II°II K@

U 2w ()8 + Iwix)B + 1)dx] U I¢(X)lst] Y 6},
[¢] [¢]

where B = sup(3,6-3,). As HS(Q)G L8(n), the property (7.22) is a direct

consequence of (7.23).

. 3 auh
3) Now, for any t; > 0, we estimate |(u(t) - uh(t),gtg(t) - -ét—(t))| ly for 0 €t €t
where u(t) and u,(t) are the solutions of the equations (7.1) and (7.1),
respectively, with initial condition (¢h,¢h) = Bx(R,). Thanks to the hypothesis

(7.21)(ii), we have, on the one hand,
(7.24) Iu(e) - Quu(BI| 5 . € K,héC (R)),
and, on the other hand,

-JL-— Q u, v-Q v
[EXCRAXCITINEET N e AL
R Q
H(Q)  vEH(Q) II IIHO(Q)

3
¢ %ﬂg(m | l'a_‘tL. %Q"ul lL’(Q)l [V - Quv| |L’(Q)
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L
S which gives
: 8 a ]

(7.25) | |5:1(t) - % QuO|| . ¢ 2K,h°C,(R).

H(Q)

N 3 Ou,
N It remains to estimate the term [(Quu(t) - uh(t),—atQhu(t) - st—(t))ny for
N
~ 0 €t ¢ t,. Note that the operator Qh can be extended to a continuous, linear

operator from H-Y(Q) into V, and that thus the element u, - Q,u satisfies the
. equation:
5 \
> (7.26) g;, (uy, - Quu) + 2« %t (up - Quu) + Ay, - Quu) = -Qy(f(v,) - f(u))

- (ALQy - QA)u.

N : Let us introduce the operator ShE L(H‘l(n);Vh) given by
S (7.27) VE € H)(Q), a(S,f,v,) = [f,vy], Vv, EV,.
.

Clearly, one has
- 7.28 S, f £ cif] R
: (7.28) [1Sy, “n})(n) cli ”H-I(Q)
-
” where ¢ > 0 is a constant independent of h.
- Taking the inner product in L3(Q) of (7.26) by Sh(gt (u, - Q,u)) and using the
¢ relation (7.27), we obtain:
-
: (7.29) a@ s (u, - Qu), &S (u,-Qu)) + 20a(S,&(u,-Q,u), S, E(u,-Q.u)

. at2 Shtth n' g7 Shian hge h k") Oh AR
+a(y, - Qu, S g—t(uh - Q)

: = 1fu,) - £@).8,2(w, - Qul + atu - Qu.S, Lu, - Qu)
- But a(u - Qu.S, %:‘“h - Qu)) = a(P,u - Qu, S, %t(uh - Q)
2
0
W

= [Pyu - Quu, Z(uy - Q) = [Pyu - ud(u,-Qu))

S s

.
x s A m

., “-_’ TP - _f_.. . .‘.!_’ . ,,.. R .'...‘ .._..-_..-' e te "~..‘ - "'_"',." LS ..-‘_ R e - e '..' ‘,‘-.‘. - -_. _..-._-.. o~ - -
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and

¢ a(uy - Quu, S, g-—t(uh - Quu) = [y, - Qu, %t—(uh - Quul

Then, from (7.29) we can derive the following inequality:

13 2 o) 2
.1 |(% Su(u, - Q| g * 2 | G Sulen - Q)| | e
18 . 2
+ u -Qu
> ar il h“n’(n)

IR - SOl 150 Saltn = Q)] g

a
+ jlu - Ppul |L’(Q)I |a(“h - Quu) | lx,’(ﬁ)

Su
Using the property (7.22) and the fact that (u,%) and (uh,—a—t—‘—‘) belong to

Bx(C,(Ry)), we infer from the above estimate that

a .,8 2 2
(7.30) =|1%= S, (u, ~ Qu) + u, - Qu

ot g Saltn- Qu Hn},(n) e - Q, ”L’(ﬁ)

L*(C,(R.))
LA\ . 2 . 2
€ o {“u Qhu“LZ o + |luy Qhu”Lz(Q)}

+ 2C(Rylfu - Phulle )
Integrating (7.30) from O to t and using Gronwall’s lemma as well as the

hypothesis (7.21)(ii), we get, for 0 € t € ¢t,,

Kqt
(7.31) I|%; Sy(uy, - QuuX1)] I;‘,(m + [l - QDI € Kotie > he.

where K, > 0 and K4 > 0 are two constants depending on R; only. Now let

us remark that

XA
FRERE A &

Laa

| |

[d
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iy

' )
2, 5.
'z? ”% Sp(uy - Quu)| | L. = sup [BL(U" Qhu).v]
S - LR L TV
» Hy ()

- sup, B, - QY]
R T v
HY(Q)

- sup (S, - QuIQY)
vEHo(A) i,
CTO)

and therefore, thanks to the hypothesis (7.21)(i),

3 )
(32 [ Sn - QW] <Ko 11 Sy, - Quu)| |u},(ﬂ)

Finally, by (7.24), (7.25), (7.31) and (7.32), we obtain, for 0 ¢ t € ¢,
du Kt
(7.33) | [ - v .80 - )| € K, 2 e 5 p¥2
at at Y
where K, and K; are positive constants depending on R, only.

4) Since, for any h > 0, 4, C By(Ry), we deduce from the property (7.33), by
arguing as in the proof of Proposiiton 2.10 (or in Remark 2.7), that, for any ¢, >

0, there exists hy > 0 such that, for h € hy, 5(4,,4) € ¢,

Remark 7.1. The results of theorems 7.1 and 7.2 extend ecasily to the cases where
0 is a bounded domain in R or R? (for the conditions on f, see [Babin and Vishik]

or [Hale, 2]).
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